Les Plywood: Difference between revisions

From Nottinghack Wiki
Jump to navigation Jump to search
String spacing change
Line 241: Line 241:
=====String Spacing=====
=====String Spacing=====


In the initial revision, I modelled a string spacing of 8.75mm. Today I've checked the printed part against one of my guitars and it seems a little small so I will be increasing it to 10.4mm. This looks must more like the real part.   
In the initial revision, I modelled a string spacing of 8.75mm. Today I've checked the printed part against one of my guitars and it seems a little small so I will be increasing it to 10.4mm. This looks much more like the real part.   


<Gallery>
<Gallery>

Revision as of 19:18, 31 December 2018

Les Plywood
[[{{{image}}}|border|frameless|220px|center]]
Primary Contact {{{primary}}}
Created 21/12/2018
Completed {{{completeddate}}}
Dormant {{{dormantdate}}}
Version {{{version}}}
Members danspencer101
Manufacturer {{{manufacturer}}}
Model {{{model}}}
Location [[{{{location}}}]]
GitHub / Repo {{{repo}}}
Status In Progress
Type Undefined
Live Status {{{livestatus}}}
QR code


Intro

Can a Les Paul guitar be produced through laser cutting? Probably, yes but anyone who knows anything about guitars would ask why... Well, I wanted to give this a go for no real reason other than its something to do that will challenge my skills. I am under no illusions that plywood is not an ideal material for an electric guitar but I'm going to try it anyway!


Making the Body

CAD

Model in Fusion 360

First things first I needed a model to create the DXF files for the laser cutter. I used a reference image that I found online and modelled it up in Fusion 360. See Here for the reference I used. I have deviated slightly from the plan as it is very badly drawn and doesn't follow any engineering standards at all. Anyway, it was good enough for me to put together a model :)

CAD Model

Once I had the model in Fusion 360 I produced a stack of planes that intersected the model and put a blank sketch on each of these planes. I then named all of the sketches to DXF Sketch 1 through to 8 as shown in the image. To pick up the geometry of the model you need to do an intersect in the sketch, its not automatic as I first thought. Then right click the sketch and save to DXF.

Arrange in Inkscape

With the DXF stack ready I then moved over to inkscape. Importing the sketches one at a time (Making sure to check that I was working in mm) and arranging them onto the 800mmx600mm page resulted in something that looks like this. These can then be taken over to Lasercut5.3 via any method you prefer.

Laser Cutting

I took a couple of videos and have uploaded them to youtube. See below.



Apologies about the vertical video, what was I thinking!

Gluing

Alignment

I put some through going 5mm holes into the model for aligning the stack. I used M5 machine bolts and was able to unscrew them once the glue dried. This alignment method has worked quite well but hasn't resulted in a perfectly smooth external surface. Oh well, the imperfections can be sanded away and any that remain will just add character. The very top layers were aligned using 10mm dowels in the holes where the bridge will go. Seemed to work ok!

Clamping Arrangement

Result

Sanding

I hadn't originally intended to sand this at all but the edges were just a bit too rough due to the misalignment between layers and it didn't feel nice to hold so my hand was forced. The top was sanded using the mouse/ palm sander in the dusty area. I wanted to maintain the layered look of the laser cut layers so didn't go over the top; just broke the sharp edges.

For the edges I used a combination of the disk sander and a drill mounted drum sander, both inside the dusty area. This worked well and has made the guitar nicer to hold whilst maintaining the characteristic layered effect of the ply.

Building the neck

Neck Modelling in Progress
Fret Positions

CAD

I have modelled the neck with a 5 degree angle from the body and a 15 degree head stock angle. Still need to model in the slot for the truss rod and frets. I'm waiting for the truss rod to arrive before I model it in so I can measure it and get the anchor points correct. I'd like to do the majority on the laser with ply and then glue an approx 5mm thick hardwood veneer on top for the fret board.

Fret Positions

The model I'm producing has a scale length of 625mm. That is the distance of the vibrating length of string, as the scale length affects the sound the guitar makes it is important to get the frets in position as accurately as possible. The numbers below were taken from the fret calculator here: https://www.stewmac.com/FretCalculator


Fret Distance from nut Fret to Fret Distance
1 35.079mm 35.079mm (nut-1)
2 68.188mm 33.110mm (1-2)
3 99.440mm 31.251mm (2-3)
4 128.937mm 29.497mm (3-4)
5 156.779mm 27.842mm (4-5)
6 183.058mm 26.279mm (5-6)
7 207.863mm 24.804mm (6-7)
8 231.275mm 23.412mm (7-8)
9 253.373mm 22.098mm (8-9)
10 274.231mm 20.858mm (9-10)
11 293.918mm 19.687mm (10-11)
12 312.500mm 18.582mm (11-12)
13 330.039mm 17.539mm (12-13)
14 346.594mm 16.555mm (13-14)
15 362.220mm 15.626mm (14-15)
16 376.969mm 14.749mm (15-16)
17 390.890mm 13.921mm (16-17)
18 404.029mm 13.140mm (17-18)
19 416.431mm 12.402mm (18-19)
20 428.137mm 11.706mm (19-20)
21 439.186mm 11.049mm (20-21)
22 449.615mm 10.429mm (21-22)


Gathering Materials

Fret Board

I have ordered a piece of Indian Rosewood from Ebay. Price including postage £12.30. The piece is a little bit larger than I require so I will be testing it in the laser cutter when it arrives to see if I can engrave the inlays/ fret locations.

https://www.ebay.co.uk/itm/Guitar-Indian-Rosewood-Fretboard-luthier-Tonewood/123489924277

Fret Wire

I have ordered 1.8m of DHP-20 fret wire from eBay. Cost including postage approx. £20

Truss Rod

In order to adjust the action of the neck, a truss rod is needed. Without looking into it too much I ordered this 480mm one from ebay: https://www.ebay.co.uk/itm/391966334841

Cost just under £10.

Creating the Other Hardware

I could just buy this stuff in cheaply but I want to have a go at making it all my self. I'll try to document my thought & manufacturing processes as best as I can.


Tune-o-Matic Bridge

The tune-o-matic bridge is used to anchor the strings on the body of the guitar. There are two parts to it; the stop bar and the bridge itself.

Stop Bar

CAD

The CAD was all done in Fusion 360 just as for the rest of the project. I haven't modelled the threads in for the pegs, will need to increase the diameter slightly before cutting metal so I can tap threads.

3D Print Size Check

Although I was confident that the part would fit the guitar, I wanted to check that the radius on the top was OK as its quite hard to gauge through the computer screen. I was quite happy with the result! This was printed on my CR-10s at home but could easily have been done on the 3D Printer at the hackspace.

String Spacing

In the initial revision, I modelled a string spacing of 8.75mm. Today I've checked the printed part against one of my guitars and it seems a little small so I will be increasing it to 10.4mm. This looks much more like the real part.

How to make this in metal?

Still unsure on how I will produce the Stop Bar. I think my options are:

  • Simplify the model and manually Mill
  • Some kind of CNC Milling
  • Sand Casting
  • Lost PLA Casting

For the anchor and peg pieces, I have ordered some aluminium round bar and intend to produce these on either the CNC lathe or manual lathe.



Bridge

CAD

This is still WIP. Not quite got my model sorted for the bridge yet. The pegs and anchor have been modelled and are shown below.

Pickups

Intending to hand wind these.


Strap Buttons

These will be cut on the Lathe using aluminium bar.

Pick Guard

I have ordered a sheet of 30cm x 30cm 3 Ply PVC sheet. As PVC is not laser safe I will be cutting this using the CNC Mill.

Although this material has already arrived it will be one of the last things I work on for this project.